Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Mol Biol ; : 168545, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38508305

ABSTRACT

A single protein structure is rarely sufficient to capture the conformational variability of a protein. Both bound and unbound (holo and apo) forms of a protein are essential for understanding its geometry and making meaningful comparisons. Nevertheless, docking or drug design studies often still consider only single protein structures in their holo form, which are for the most part rigid. With the recent explosion in the field of structural biology, large, curated datasets are urgently needed. Here, we use a previously developed application (AHoJ) to perform a comprehensive search for apo-holo pairs for 468,293 biologically relevant protein-ligand interactions across 27,983 proteins. In each search, the binding pocket is captured and mapped across existing structures within the same UniProt, and the mapped pockets are annotated as apo or holo, based on the presence or absence of ligands. We assemble the results into a database, AHoJ-DB (www.apoholo.cz/db), that captures the variability of proteins with identical sequences, thereby exposing the agents responsible for the observed differences in geometry. We report several metrics for each annotated pocket, and we also include binding pockets that form at the interface of multiple chains. Analysis of the database shows that about 24% of the binding sites occur at the interface of two or more chains and that less than 50% of the total binding sites processed have an apo form in the PDB. These results can be used to train and evaluate predictors, discover potentially druggable proteins, and reveal protein- and ligand-specific relationships that were previously obscured by intermittent or partial data. Availability: www.apoholo.cz/db.

2.
bioRxiv ; 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38260256

ABSTRACT

Recent advances in AI-based methods have revolutionized the field of structural biology. Concomitantly, high-throughput sequencing and functional genomics technologies have enabled the detection and generation of variants at an unprecedented scale. However, efficient tools and resources are needed to link these two disparate data types - to "map" variants onto protein structures, to better understand how the variation causes disease and thereby design therapeutics. Here we present the Genomics 2 Proteins Portal (G2P; g2p.broadinstitute.org/): a human proteome-wide resource that maps 19,996,443 genetic variants onto 42,413 protein sequences and 77,923 structures, with a comprehensive set of structural and functional features. Additionally, the G2P portal generalizes the capability of linking genomics to proteins beyond databases by allowing users to interactively upload protein residue-wise annotations (variants, scores, etc.) as well as the protein structure to establish the connection. The portal serves as an easy-to-use discovery tool for researchers and scientists to hypothesize the structure-function relationship between natural or synthetic variations and their molecular phenotype.

3.
Front Bioinform ; 3: 1101505, 2023.
Article in English | MEDLINE | ID: mdl-37502697

ABSTRACT

Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.

4.
Brain ; 146(2): 519-533, 2023 02 13.
Article in English | MEDLINE | ID: mdl-36256779

ABSTRACT

Neurodevelopmental disorders (NDDs), including severe paediatric epilepsy, autism and intellectual disabilities are heterogeneous conditions in which clinical genetic testing can often identify a pathogenic variant. For many of them, genetic therapies will be tested in this or the coming years in clinical trials. In contrast to first-generation symptomatic treatments, the new disease-modifying precision medicines require a genetic test-informed diagnosis before a patient can be enrolled in a clinical trial. However, even in 2022, most identified genetic variants in NDD genes are 'variants of uncertain significance'. To safely enrol patients in precision medicine clinical trials, it is important to increase our knowledge about which regions in NDD-associated proteins can 'tolerate' missense variants and which ones are 'essential' and will cause a NDD when mutated. In addition, knowledge about functionally indispensable regions in the 3D structure context of proteins can also provide insights into the molecular mechanisms of disease variants. We developed a novel consensus approach that overlays evolutionary, and population based genomic scores to identify 3D essential sites (Essential3D) on protein structures. After extensive benchmarking of AlphaFold predicted and experimentally solved protein structures, we generated the currently largest expert curated protein structure set for 242 NDDs and identified 14 377 Essential3D sites across 189 gene disorders associated proteins. We demonstrate that the consensus annotation of Essential3D sites improves prioritization of disease mutations over single annotations. The identified Essential3D sites were enriched for functional features such as intermembrane regions or active sites and discovered key inter-molecule interactions in protein complexes that were otherwise not annotated. Using the currently largest autism, developmental disorders, and epilepsies exome sequencing studies including >360 000 NDD patients and population controls, we found that missense variants at Essential3D sites are 8-fold enriched in patients. In summary, we developed a comprehensive protein structure set for 242 NDDs and identified 14 377 Essential3D sites in these. All data are available at https://es-ndd.broadinstitute.org for interactive visual inspection to enhance variant interpretation and development of mechanistic hypotheses for 242 NDDs genes. The provided resources will enhance clinical variant interpretation and in silico drug target development for NDD-associated genes and encoded proteins.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , Child , Neurodevelopmental Disorders/genetics , Genetic Testing , Mutation/genetics , Intellectual Disability/genetics , Mutation, Missense
5.
Bioinformatics ; 38(24): 5452-5453, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36282546

ABSTRACT

SUMMARY: Understanding the mechanism of action of a protein or designing better ligands for it, often requires access to a bound (holo) and an unbound (apo) state of the protein. Resources for the quick and easy retrieval of such conformations are severely limited. Apo-Holo Juxtaposition (AHoJ), is a web application for retrieving apo-holo structure pairs for user-defined ligands. Given a query structure and one or more user-specified ligands, it retrieves all other structures of the same protein that feature the same binding site(s), aligns them, and examines the superimposed binding sites to determine whether each structure is apo or holo, in reference to the query. The resulting superimposed datasets of apo-holo pairs can be visualized and downloaded for further analysis. AHoJ accepts multiple input queries, allowing the creation of customized apo-holo datasets. AVAILABILITY AND IMPLEMENTATION: Freely available for non-commercial use at http://apoholo.cz. Source code available at https://github.com/cusbg/AHoJ-project. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Proteins , Software , Protein Conformation , Ligands , Proteins/chemistry , Binding Sites
6.
Nucleic Acids Res ; 50(W1): W593-W597, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35609995

ABSTRACT

Knowledge of protein-ligand binding sites (LBSs) enables research ranging from protein function annotation to structure-based drug design. To this end, we have previously developed a stand-alone tool, P2Rank, and the web server PrankWeb (https://prankweb.cz/) for fast and accurate LBS prediction. Here, we present significant enhancements to PrankWeb. First, a new, more accurate evolutionary conservation estimation pipeline based on the UniRef50 sequence database and the HMMER3 package is introduced. Second, PrankWeb now allows users to enter UniProt ID to carry out LBS predictions in situations where no experimental structure is available by utilizing the AlphaFold model database. Additionally, a range of minor improvements has been implemented. These include the ability to deploy PrankWeb and P2Rank as Docker containers, support for the mmCIF file format, improved public REST API access, or the ability to batch download the LBS predictions for the whole PDB archive and parts of the AlphaFold database.


Subject(s)
Proteins , Software , Ligands , Proteins/chemistry , Binding Sites , Protein Binding , Protein Domains , Databases, Protein , Internet
7.
Nat Commun ; 12(1): 3494, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108470

ABSTRACT

Non-coding RNAs (ncRNA) are essential for all life, and their functions often depend on their secondary (2D) and tertiary structure. Despite the abundance of software for the visualisation of ncRNAs, few automatically generate consistent and recognisable 2D layouts, which makes it challenging for users to construct, compare and analyse structures. Here, we present R2DT, a method for predicting and visualising a wide range of RNA structures in standardised layouts. R2DT is based on a library of 3,647 templates representing the majority of known structured RNAs. R2DT has been applied to ncRNA sequences from the RNAcentral database and produced >13 million diagrams, creating the world's largest RNA 2D structure dataset. The software is amenable to community expansion, and is freely available at https://github.com/rnacentral/R2DT and a web server is found at https://rnacentral.org/r2dt .


Subject(s)
Computational Biology/methods , RNA/chemistry , Databases, Nucleic Acid , Nucleic Acid Conformation , RNA, Untranslated/chemistry , Reproducibility of Results , Sequence Analysis, RNA , Software
9.
IEEE/ACM Trans Comput Biol Bioinform ; 18(3): 1130-1141, 2021.
Article in English | MEDLINE | ID: mdl-31484128

ABSTRACT

Visualization of biological mechanisms by means of pathway graphs is necessary to better understand the often complex underlying system. Manual layout of such pathways or maps of knowledge is a difficult and time consuming process. Node duplication is a technique that makes layouts with improved readability possible by reducing edge crossings and shortening edge lengths in drawn diagrams. In this article, we propose an approach using Machine Learning (ML) to facilitate parts of this task by training a Support Vector Machine (SVM) with actions taken during manual biocuration. Our training input is a series of incremental snapshots of a diagram describing mechanisms of a disease, progressively curated by a human expert employing node duplication in the process. As a test of the trained SVM models, they are applied to a single large instance and 25 medium-sized instances of hand-curated biological pathways. Finally, in a user validation study, we compare the model predictions to the outcome of a node duplication questionnaire answered by users of biological pathways with varying experience. We successfully predicted nodes for duplication and emulated human choices, demonstrating that our approach can effectively learn human-like node duplication preferences to support curation of pathway diagrams in various contexts.


Subject(s)
Computational Biology/methods , Machine Learning , Models, Biological , Data Display , Humans , Signal Transduction , Support Vector Machine
10.
Proc Natl Acad Sci U S A ; 117(45): 28201-28211, 2020 11 10.
Article in English | MEDLINE | ID: mdl-33106425

ABSTRACT

Interpretation of the colossal number of genetic variants identified from sequencing applications is one of the major bottlenecks in clinical genetics, with the inference of the effect of amino acid-substituting missense variations on protein structure and function being especially challenging. Here we characterize the three-dimensional (3D) amino acid positions affected in pathogenic and population variants from 1,330 disease-associated genes using over 14,000 experimentally solved human protein structures. By measuring the statistical burden of variations (i.e., point mutations) from all genes on 40 3D protein features, accounting for the structural, chemical, and functional context of the variations' positions, we identify features that are generally associated with pathogenic and population missense variants. We then perform the same amino acid-level analysis individually for 24 protein functional classes, which reveals unique characteristics of the positions of the altered amino acids: We observe up to 46% divergence of the class-specific features from the general characteristics obtained by the analysis on all genes, which is consistent with the structural diversity of essential regions across different protein classes. We demonstrate that the function-specific 3D features of the variants match the readouts of mutagenesis experiments for BRCA1 and PTEN, and positively correlate with an independent set of clinically interpreted pathogenic and benign missense variants. Finally, we make our results available through a web server to foster accessibility and downstream research. Our findings represent a crucial step toward translational genetics, from highlighting the impact of mutations on protein structure to rationalizing the variants' pathogenicity in terms of the perturbed molecular mechanisms.


Subject(s)
Mutation, Missense/genetics , Proteins/chemistry , Proteins/genetics , Amino Acid Sequence , BRCA1 Protein/chemistry , BRCA1 Protein/genetics , Computational Biology/methods , Humans , Machine Learning , Models, Molecular , Mutation, Missense/physiology , PTEN Phosphohydrolase/chemistry , PTEN Phosphohydrolase/genetics , Protein Conformation , Proteins/physiology
11.
Nucleic Acids Res ; 48(W1): W132-W139, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32402084

ABSTRACT

Human genome sequencing efforts have greatly expanded, and a plethora of missense variants identified both in patients and in the general population is now publicly accessible. Interpretation of the molecular-level effect of missense variants, however, remains challenging and requires a particular investigation of amino acid substitutions in the context of protein structure and function. Answers to questions like 'Is a variant perturbing a site involved in key macromolecular interactions and/or cellular signaling?', or 'Is a variant changing an amino acid located at the protein core or part of a cluster of known pathogenic mutations in 3D?' are crucial. Motivated by these needs, we developed MISCAST (missense variant to protein structure analysis web suite; http://miscast.broadinstitute.org/). MISCAST is an interactive and user-friendly web server to visualize and analyze missense variants in protein sequence and structure space. Additionally, a comprehensive set of protein structural and functional features have been aggregated in MISCAST from multiple databases, and displayed on structures alongside the variants to provide users with the biological context of the variant location in an integrated platform. We further made the annotated data and protein structures readily downloadable from MISCAST to foster advanced offline analysis of missense variants by a wide biological community.


Subject(s)
Mutation, Missense , Protein Conformation , Software , Humans , Internet , Proteins/chemistry , Proteins/genetics
12.
Brief Bioinform ; 21(4): 1249-1260, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31273380

ABSTRACT

The understanding of complex biological networks often relies on both a dedicated layout and a topology. Currently, there are three major competing layout-aware systems biology formats, but there are no software tools or software libraries supporting all of them. This complicates the management of molecular network layouts and hinders their reuse and extension. In this paper, we present a high-level overview of the layout formats in systems biology, focusing on their commonalities and differences, review their support in existing software tools, libraries and repositories and finally introduce a new conversion module within the MINERVA platform. The module is available via a REST API and offers, besides the ability to convert between layout-aware systems biology formats, the possibility to export layouts into several graphical formats. The module enables conversion of very large networks with thousands of elements, such as disease maps or metabolic reconstructions, rendering it widely applicable in systems biology.


Subject(s)
Systems Biology , Algorithms , Humans , Information Storage and Retrieval , Software
13.
Nucleic Acids Res ; 47(W1): W345-W349, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31114880

ABSTRACT

PrankWeb is an online resource providing an interface to P2Rank, a state-of-the-art method for ligand binding site prediction. P2Rank is a template-free machine learning method based on the prediction of local chemical neighborhood ligandability centered on points placed on a solvent-accessible protein surface. Points with a high ligandability score are then clustered to form the resulting ligand binding sites. In addition, PrankWeb provides a web interface enabling users to easily carry out the prediction and visually inspect the predicted binding sites via an integrated sequence-structure view. Moreover, PrankWeb can determine sequence conservation for the input molecule and use this in both the prediction and result visualization steps. Alongside its online visualization options, PrankWeb also offers the possibility of exporting the results as a PyMOL script for offline visualization. The web frontend communicates with the server side via a REST API. In high-throughput scenarios, therefore, users can utilize the server API directly, bypassing the need for a web-based frontend or installation of the P2Rank application. PrankWeb is available at http://prankweb.cz/, while the web application source code and the P2Rank method can be accessed at https://github.com/jendelel/PrankWebApp and https://github.com/rdk/p2rank, respectively.


Subject(s)
Machine Learning , Proteins/chemistry , Software , Amino Acid Sequence , Benchmarking , Binding Sites , Datasets as Topic , Humans , Internet , Ligands , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteins/metabolism , Thermodynamics
14.
Bioinformatics ; 35(21): 4496-4498, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31074494

ABSTRACT

SUMMARY: The complexity of molecular networks makes them difficult to navigate and interpret, creating a need for specialized software. MINERVA is a web platform for visualization, exploration and management of molecular networks. Here, we introduce an extension to MINERVA architecture that greatly facilitates the access and use of the stored molecular network data. It allows to incorporate such data in analytical pipelines via a programmatic access interface, and to extend the platform's visual exploration and analytics functionality via plugin architecture. This is possible for any molecular network hosted by the MINERVA platform encoded in well-recognized systems biology formats. To showcase the possibilities of the plugin architecture, we have developed several plugins extending the MINERVA core functionalities. In the article, we demonstrate the plugins for interactive tree traversal of molecular networks, for enrichment analysis and for mapping and visualization of known disease variants or known adverse drug reactions to molecules in the network. AVAILABILITY AND IMPLEMENTATION: Plugins developed and maintained by the MINERVA team are available under the AGPL v3 license at https://git-r3lab.uni.lu/minerva/plugins/. The MINERVA API and plugin documentation is available at https://minerva-web.lcsb.uni.lu.


Subject(s)
Software , Systems Biology
15.
Database (Oxford) ; 20192019 01 01.
Article in English | MEDLINE | ID: mdl-31032840

ABSTRACT

Secondary data structure of RNA molecules provides insights into the identity and function of RNAs. With RNAs readily sequenced, the question of their structural characterization is increasingly important. However, RNA structure is difficult to acquire. Its experimental identification is extremely technically demanding, while computational prediction is not accurate enough, especially for large structures of long sequences. We address this difficult situation with rPredictorDB, a predictive database of RNA secondary structures that aims to form a middle ground between experimentally identified structures in PDB and predicted consensus secondary structures in Rfam. The database contains individual secondary structures predicted using a tool for template-based prediction of RNA secondary structure for the homologs of the RNA families with at least one homolog with experimentally solved structure. Experimentally identified structures are used as the structural templates and thus the prediction has higher reliability than de novo predictions in Rfam. The sequences are downloaded from public resources. So far rPredictorDB covers 7365 RNAs with their secondary structures. Plots of the secondary structures use the Traveler package for readable display of RNAs with long sequences and complex structures, such as ribosomal RNAs. The RNAs in the output of rPredictorDB are extensively annotated and can be viewed, browsed, searched and downloaded according to taxonomic, sequence and structure data. Additionally, structure of user-provided sequences can be predicted using the templates stored in rPredictorDB.


Subject(s)
Databases, Nucleic Acid , Nucleic Acid Conformation , RNA , Software , RNA/chemistry , RNA/genetics
16.
J Cheminform ; 10(1): 39, 2018 Aug 14.
Article in English | MEDLINE | ID: mdl-30109435

ABSTRACT

BACKGROUND: Ligand binding site prediction from protein structure has many applications related to elucidation of protein function and structure based drug discovery. It often represents only one step of many in complex computational drug design efforts. Although many methods have been published to date, only few of them are suitable for use in automated pipelines or for processing large datasets. These use cases require stability and speed, which disqualifies many of the recently introduced tools that are either template based or available only as web servers. RESULTS: We present P2Rank, a stand-alone template-free tool for prediction of ligand binding sites based on machine learning. It is based on prediction of ligandability of local chemical neighbourhoods that are centered on points placed on the solvent accessible surface of a protein. We show that P2Rank outperforms several existing tools, which include two widely used stand-alone tools (Fpocket, SiteHound), a comprehensive consensus based tool (MetaPocket 2.0), and a recent deep learning based method (DeepSite). P2Rank belongs to the fastest available tools (requires under 1 s for prediction on one protein), with additional advantage of multi-threaded implementation. CONCLUSIONS: P2Rank is a new open source software package for ligand binding site prediction from protein structure. It is available as a user-friendly stand-alone command line program and a Java library. P2Rank has a lightweight installation and does not depend on other bioinformatics tools or large structural or sequence databases. Thanks to its speed and ability to make fully automated predictions, it is particularly well suited for processing large datasets or as a component of scalable structural bioinformatics pipelines.

17.
Bioinformatics ; 34(23): 4127-4128, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29931246

ABSTRACT

Summary: MolArt fills the gap between sequence and structure visualization by providing a light-weight, interactive environment enabling exploration of sequence annotations in the context of available experimental or predicted protein structures. Provided a UniProt ID, MolArt downloads and displays sequence annotations, sequence-structure mapping and relevant structures. The sequence and structure views are interlinked, enabling sequence annotations being color overlaid over the mapped structures, thus providing an enhanced understanding and interpretation of the available molecular data. Availability and implementation: MolArt is released under the Apache 2 license and is available at https://github.com/davidhoksza/MolArt. The project web page https://davidhoksza.github.io/MolArt/ features examples and applications of the tool.


Subject(s)
Molecular Structure , Protein Conformation , Proteins , Software , Color , Computational Biology
18.
BMC Bioinformatics ; 18(Suppl 15): 492, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29244012

ABSTRACT

BACKGROUND: Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. RESULTS: We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. CONCLUSION: In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.


Subject(s)
Amino Acids , Knowledge Bases , Protein Interaction Mapping/methods , Proteins , Software , Amino Acids/chemistry , Amino Acids/metabolism , Computational Biology , Databases, Protein , Models, Statistical , Proteins/chemistry , Proteins/metabolism
19.
BMC Bioinformatics ; 18(1): 487, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29141608

ABSTRACT

BACKGROUND: Visualization of RNA secondary structures is a complex task, and, especially in the case of large RNA structures where the expected layout is largely habitual, the existing visualization tools often fail to produce suitable visualizations. This led us to the idea to use existing layouts as templates for the visualization of new RNAs similarly to how templates are used in homology-based structure prediction. RESULTS: This article introduces Traveler, a software tool enabling visualization of a target RNA secondary structure using an existing layout of a sufficiently similar RNA structure as a template. Traveler is based on an algorithm which converts the target and template structures into corresponding tree representations and utilizes tree edit distance coupled with layout modification operations to transform the template layout into the target one. Traveler thus accepts a pair of secondary structures and a template layout and outputs a layout for the target structure. CONCLUSIONS: Traveler is a command-line open source tool able to quickly generate layouts for even the largest RNA structures in the presence of a sufficiently similar layout. It is available at http://github.com/davidhoksza/traveler .


Subject(s)
RNA/chemistry , Software , Algorithms , Nucleic Acid Conformation
20.
J Cheminform ; 8: 74, 2016.
Article in English | MEDLINE | ID: mdl-28090217

ABSTRACT

BACKGROUND: Visualization of large molecular datasets is a challenging yet important topic utilised in diverse fields of chemistry ranging from material engineering to drug design. Especially in drug design, modern methods of high-throughput screening generate large amounts of molecular data that call for methods enabling their analysis. One such method is classification of compounds based on their molecular scaffolds, a concept widely used by medicinal chemists to group molecules of similar properties. This classification can then be utilized for intuitive visualization of compounds. RESULTS: In this paper, we propose a scaffold hierarchy as a result of large-scale analysis of the PubChem Compound database. The analysis not only provided insights into scaffold diversity of the PubChem Compound database, but also enables scaffold-based hierarchical visualization of user compound data sets on the background of empirical chemical space, as defined by the PubChem data, or on the background of any other user-defined data set. The visualization is performed by a web based client-server application called Scaffvis. It provides an interactive zoomable tree map visualization of data sets up to hundreds of thousands molecules. Scaffvis is free to use and its source codes have been published under an open source license.Graphical abstract.

SELECTION OF CITATIONS
SEARCH DETAIL
...